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1 Abstract 

The mechanical properties of concrete deteriorate at high temperatures. Strain-hardening cementitious 
composites (SHCC) are a special class of fiber-reinforced concretes that exhibit strain-hardening behavior in 
direct tension. The mechanical behavior of a SHCC made using polyvinyl alcohol (PVA) fibers is characterized 
after exposure to temperatures up to 800°C. The effects of temperature on compressive strength, splitting 
tensile strength and modulus of rupture are reported. For comparison, a normal strength conventional 
concrete of similar compressive strength to the SHCC was heated and tested in the same conditions as the 
SHCC. The normalized tensile strength of SHCC at room temperature, and after exposure to high temperature, 
is significantly greater than the value for conventional concrete. The PVA fibers provide crack-bridging capacity 
up to about 200°C (melting point of PVA fibers is 230°C), leading to improved tensile behavior. At greater 
temperatures, the fibers melt, creating pathways for steam to escape, reducing micro-cracking and 
significantly improving mechanical behavior with respect to conventional concrete. SHCC is a robust 
alternative to conventional concrete for high temperature applications. 

Keywords: Concrete; fire; high temperature; fiber-reinforced concrete; SHCC; compressive strength; tensile 
strength. 

2 Introduction 

The mechanical properties of concrete, similar to 
other materials, deteriorate with a significant 
increase in temperature above ambient. Structural 
design standards, such as Eurocode 2, recommend 
a reduction of about 20% and 80% in concrete 
compressive strength at 400°C and 800°C, 
respectively. The deterioration in concrete 
properties stems from a variety of physicochemical 

changes taking place in concrete’s ingredients and 
microstructure. At temperatures of up to 400°C, the 
primary source of damage is the conversion of 
water to steam and its expansion, resulting in 
micro-cracking and spalling. This, combined with 
the thermal incompatibility between aggregates 
and cement paste, causes deterioration of concrete 
strength and elastic modulus. At temperatures 
greater than 400°C, the chemical decomposition of 
the hardened cement paste further degrades the 
mechanical properties of concrete [1-4].  
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