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1 Abstract 
Catenary domes are a less conventional, but structurally efficient, alternative to traditional circular-profile 
domes. Unlike the more common circular forms, there is a dearth of wind loading information for catenary 
structures. This paper aims to provide some insight in this regard. A series of wind tunnel tests were 
undertaken to investigate the effects of geometry and Reynolds number on the mean pressure coefficient 
distributions over catenary domes in a turbulent boundary layer flow. A hemispherical dome was also 
assessed, and the results compared with that for the catenary shapes. These parameters were evaluated to 
elucidate their influence on the loading on these structures. Only the results relating to mean pressure 
coefficients are reported in this paper.  An important finding was that the height to base radius (H/R) of the 
catenary dome had a substantial influence on the mean pressure coefficient distributions over the structure. 
Finally, the results of the investigation and their implications on the design of catenary domes are discussed. 
This may be of value to designers because at present no wind loading information exists for catenary domes 
– at least to the author’s knowledge. 
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2 Introduction 
Thin shell structures have been around for many 
years. A thin shell structure is one in which forces 
are transmitted primarily in-plane to the supports. 
Many shell forms, such as a hemispherical dome, 
also experience localized bending and shear forces 
toward the base (i.e. boundary effects). However, 
these forces may be diminished by adopting 
structurally efficient forms. One such shape is the 
catenary, which only experiences compressive 
stresses (i.e. no tension) under self-weight alone. A 
catenary is defined as the shape a chain makes 
when it hangs freely between two supports. The 
compressive forces are lowest at the highest point 

(i.e. apex) and increase towards the base of the 
structure. The form is particularly appealing when 
designing with materials that have an affinity for 
compressive stress, e.g.  unreinforced masonry. 

Although the catenary dome offers substantial 
structural benefits, no information could be found 
regarding wind pressures/loading on these 
structures.  Most of the published wind loading 
information for curved roof structures corresponds 
to circular vaults and domes (e.g. Taylor 1992 [1]; 
Blessmann, 1996 [2]; Blackmore and Tsokri, 2006 
[3]; Cheng and Fu, 2009 [4]).  Due to a lack of 
relevant data in the literature, a wind-tunnel 
investigation was undertaken to better understand 
the wind effects on catenary domes. The study was 
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